
BIOINFORMATICS Vol. 15 no. 12 1999
Pages 1000–1011

IMPALA: matching a protein sequence against a
collection of PSI-BLAST-constructed
position-specific score matrices
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Abstract
Motivation: Many studies have shown that database
searches using position-specific score matrices (PSSMs)
or profiles as queries are more effective at identifying
distant protein relationships than are searches that use
simple sequences as queries. One popular program for
constructing a PSSM and comparing it with a database
of sequences is Position-Specific Iterated BLAST (PSI-
BLAST).
Results: This paper describes a new software package,
IMPALA, designed for the complementary procedure of
comparing a single query sequence with a database of
PSI-BLAST-generated PSSMs. We illustrate the use of
IMPALA to search a database of PSSMs for protein
folds, and one for protein domains involved in signal
transduction. IMPALA’s sensitivity to distant biologi-
cal relationships is very similar to that of PSI-BLAST.
However, IMPALA employs a more refined analysis of
statistical significance and, unlike PSI-BLAST, guarantees
the output of the optimal local alignment by using the
rigorous Smith–Waterman algorithm. Also, it is consider-
ably faster when run with a large database of PSSMs than
is BLAST or PSI-BLAST when run against the complete
non-redundant protein database.
Availability: The IMPALA source code, the wolf1187
database, and the aravind105 database are freely
available from the NCBI ftp site ncbi.nlm.nih.gov.
The databases may be found in the subdirectory
ftp://ncbi.nlm.nih.gov/pub/ impala. The source code
is in ftp://ncbi.nlm.nih.gov/ toolbox/ncbi tools. Some IM-
PALA executables for different implementations of UNIX
are in ftp://ncbi.nlm.nih.gov/blast/executables. IMPALA
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has been added as a search option on the Blocks Database
Server (http://blocks.fhcrc.org/blocks/ impala.html) using
a library of PSSMs derived from the BLOCKS database.
Contact: schaffer@helix.nih.gov

Introduction
This paper describes a new software package, IMPALA
(Integrating Matrix Profiles And Local Alignments),
for searching a database of position-specific score ma-
trices (PSSMs) using a protein sequence as query. It
complements the popular programs BLAST and Position-
Specific Iterated BLAST (PSI-BLAST) (Altschul et
al., 1997) that search a database of proteins sequences
using, respectively, a simple sequence and a PSSM as
query. Position-specific score matrices, sometimes called
profiles and sometimes encoded as hidden Markov models
(HMMs), have a long history (McLachlan, 1983; Staden,
1984; Schneider et al., 1986; Taylor, 1986; Berg and
von Hippel, 1987; Dodd and Egan, 1987; Gribskov et al.,
1987; Patthy, 1987; Stormo and Hartzell, 1989; Gribskov
et al., 1990; Brown et al., 1993; Lawrence et al., 1993;
Tanaka et al., 1993; Baldi et al., 1994; Tatusov et al.,
1994; Yi and Lander, 1994; Durbin et al., 1998). The
primary intuition is that a multiple alignment of related
proteins can reveal position-specific residue propensities
which, properly deployed, should increase the sensitivity
with which distant homologs are recognized. For exam-
ple, in an alignment position where leucine is completely
conserved, a leucine might receive a high positive score,
whereas in a position where a variety of hydrophobic
residues have been observed, leucine might receive a
lower but still positive score.

An effective system for searching a database of PSSMs
has three elements, each of which poses separate chal-
lenges: (1) the construction and curation of multiple
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alignments for many sets of interesting proteins; (2) the
conversion of the multiple alignments into position-
specific scoring systems; (3) an algorithm for searching a
database of position-specific models.

Some important approaches to problem 1 include:
PROSITE (Hofmann et al., 1999), the BLOCKS database
(Henikoff and Henikoff, 1994), Pfam (Bateman et al.,
1999; Sonnhammer et al., 1997), and SMART (Ponting et
al., 1999b). PROSITE addresses problems 2 and 3 with
the software pftools (Bucher et al., 1996). The BLOCKS
project has addressed these problems with various mul-
tiple alignment software tools in the Blocks Database
Server (Henikoff et al., 1999). IMPALA has recently
been added as a search option on the Blocks Database
Server (http://blocks.fhcrc.org/blocks/impala.html) using
a library of PSSMs derived from the BLOCKS database.
The Pfam and SMART projects use HMMs as encoded
in the package HMMER (Eddy, 1996). HMMs relevant
to problems 2 and 3 were introduced recently by several
groups (Brown et al., 1993; Tanaka et al., 1993; Baldi and
Chauvin, 1994; Baldi et al., 1994; Krogh et al., 1994) to
model large protein families such as globins. Their theory
is described in detail in the book (Durbin et al., 1998), and
Eddy (1998) gives a review of relevant HMM literature.
There have been various other related approaches to these
problems as well (Tatusov et al., 1994; Neuwald et al.,
1997; Park et al., 1998).

These search tools are widely used, and each is more
effective at identifying distant similarities than position-
independent methods. Despite the many successes of
position-specific methods, position-independent methods
such as FASTA (Pearson and Lipman, 1988) and BLAST
(Altschul et al., 1990; Gish and States, 1993; Altschul
et al., 1997) remain more popular for protein similarity
searching.

BLAST took an important step towards position-specific
searching by adding the PSI-BLAST module (Altschul et
al., 1997). PSI-BLAST addresses the multiple alignment
construction problem by coalescing the pairwise matches
found by BLAST into a multiple alignment. It then
converts this alignment into a PSSM by calculating scores
for each position as the logarithm of ratios between
predicted and background residue frequencies. The ways
in which PSI-BLAST confronts problems 1 and 2 thus
are quick and convenient for researchers who already use
BLASTP. Although it is possible to start PSI-BLAST
directly with a PSSM built in a previous run, this does
not address problem 3 because each PSI-BLAST run
uses only a single scoring matrix. The ability of PSI-
BLAST to systematically detect subtle but structurally and
functionally relevant relationships between proteins has
been demonstrated by several groups (Mushegian et al.,
1997; Altschul and Koonin, 1998; Huynen et al., 1998;
Park et al., 1998; Rychlewski et al., 1998; Aravind and

Koonin, 1999; Teichmann et al., 1999; Wolf et al., 1999).
IMPALA complements PSI-BLAST by allowing users

to systematically compare a single query sequence with
a database of PSSMs of the form constructed by PSI-
BLAST. For the purposes of rapid code development and
testing, IMPALA has been written as a set of separate
programs, but it is integrated into the National Center for
Biotechnology Information (NCBI) software toolkit and
reuses much of the code and theory of PSI-BLAST.

IMPALA’s local alignment scores are provably optimal,
unlike BLAST’s or PSI-BLAST’s, because IMPALA uses
the Smith–Waterman algorithm (Smith and Waterman,
1981; Gotoh, 1982). This algorithm is much slower than
the BLAST algorithm for searching the same database of
sequences. However, a PSSM database that attempts to
avoid redundancy will be a fraction of the length of the
underlying sequence database used to construct its models.
For PSSM and standard sequence databases required to
match a similar range of sequences, the PSSM database
should be able to be substantially shorter.

We believe that with further development of well-
curated PSSM libraries, IMPALA and similar tools should
become an important addition to the existing repertoire of
database-searching methods.

Methods
The IMPALA package consists of three programs:
makemat, copymat, and impala. The programs makemat
and copymat are auxiliary programs that manipulate
the PSSM database; they need to be run only once per
database, much like the formatdb auxiliary program is
run to create a BLAST-searchable sequence database
representation. To search a query against a formatted
PSSM database the user runs just the impala program. We
use upper case IMPALA to refer to the entire package,
and lower case impala to refer to the main program.

The Methods section is divided into three parts. First,
we describe the representation of PSSMs in IMPALA
and two preprocessing programs that manipulate that
representation. Second, we describe the theory used to
compute alignments and E-values. Third, we describe the
engineering of the main program impala.

PSSM representation and preprocessing
A PSSM M generated by PSI-BLAST is associated with
a sequence whose residues define the positions, and are
used for displaying pairwise alignments. The command-
line version of PSI-BLAST allows the user to store the
current PSSM in a file with the -C (stands for ‘check-
point’) option, and to restart from a previously stored
checkpoint file with the -R (stands for ‘restart’) option.
For a sequence of length L , the checkpoint is stored as an
L × 20 array of floating point ratios of the general form
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qi j/p j , where qi j represents the predicted frequency of
residue j in position i , and p j represents the background
frequency of residue j .

PSI-BLAST checkpoints are stored as byte-encoded
frequency ratios to insure maximum flexibility in scaling.
The makemat auxiliary program converts these ratios into
integral ASCII score matrices, so that PSSM sets can be
examined and freely distributed in a machine-independent
fashion. While constructing these matrices, makemat also
records in an auxiliary file certain useful information such
as the statistical parameters for each matrix, gap costs, and
the overall size of the PSSM set.

The program copymat converts the matrix files gen-
erated by makemat into one-large byte-encoded integer
matrix of dimensions D × 20, where D is the number of
positions in the PSSM database. This conversion allows
impala to read the entire PSSM database with a single
mmap command, rather than fetching individual matrices
with multiple disk accesses.

For each PSSM library, the preprocessor programs
makemat and copymat are each run once, converting it to
the format used by the main program impala.

Alignments, scores and E-values in impala: theory and
gaps
The impala program seeks an optimal gapped local
alignment of the query sequence Q against each PSSM
M . Each PSSM has an associated sequence which is used
only as a placeholder, so that pairwise alignments can
be displayed in BLAST format. Optimal local alignments
are guaranteed by using the Smith and Waterman (1981)
algorithm, extended for affine gap costs (Gotoh, 1982).
Only alignments with an E-value below some user-
controlled threshold are reported. If Q and M have a
local alignment with E-value below this threshold, impala
seeks additional disjoint local alignments using a multiple-
match extension (Waterman and Eggert, 1987) of the
Smith and Waterman (1981) algorithm.

Alignment scores are converted to E-values using
empirical parameters for the extreme value distribution
(Altschul and Gish, 1996; Altschul et al., 1997). We
explain in some detail how this is done because impala’s
approach departs slightly from that of various versions of
BLAST (Altschul et al., 1990, 1997), and as a result may
generate more accurate E-values.

An analytic theory allows one to estimate the statisti-
cal significance of ungapped local alignments of two se-
quences A and B (Karlin and Altschul, 1990; Dembo et
al., 1994). The theory applies in the asymptotic limit of
long sequences, but a short sequence ‘edge-correction’ has
been proposed (Altschul and Gish, 1996). In brief, given
an ungapped local alignment with score S, its E-value (the
expected number of distinct alignments from the compar-
ison of random sequences that would achieve a score at

least S) can be estimated by:

(1) Compute parameters λ and K that depend on the
residue composition of A, B and on the residue
substitution scores used.

(2) Compute adjusted lengths lA and lB of A and B
that take into account that high-scoring alignments
cannot start near the end of either sequence.

(3) Compute a normalized score S′ = λS − ln(K ).

(4) Compute the E-value as lAlBe−S′ .

When sequence B is part of a database, to correct for
multiple comparisons the term lB is replaced in step 4 by
the sum of the adjusted lengths of all database sequences
(Altschul et al., 1994). This correction, used in all BLAST
programs, reflects the a priori assumption that database
sequences are likely to yield biologically meaningful local
alignments in proportion to their length. An alternative
view, implemented in some sequence analysis programs,
e.g. FASTA (Pearson and Lipman, 1988), is that all
database sequences are a priori equally likely to yield a
meaningful match, regardless of their lengths. Taking this
view, one would instead multiply the term in step 4 by the
number of sequences in the database.

If A is the query sequence and B is a database sequence,
then the original ungapped BLAST algorithm (Altschul
et al., 1990) used the actual residue composition of A at
step 1, but an average residue composition for B. Call
the resulting scale parameter λav, and the parameter that
would be obtained using the true composition of B, λtr.
If λav > λtr, then the E-value will be underestimated,
possibly leading to false positives; conversely, if λtr >

λav, the E-value will be overestimated, leading to false
negatives. Relatively small differences between λtr and λav
can lead to large differences in E-value estimates because
of the exponentiation at step 4. We found that in practice
λav is usually greater than the values of λtr, so that one may
underestimate but is unlikely to overestimate E-values by
assuming an average composition for database sequences.
If a database sequence has a residue composition that
leads to low values of λtr, it does not necessarily contain
isolated regions of restricted residue composition than can
be removed by filtering (Wootton and Federhen, 1993;
Altschul et al., 1994).

Using IMPALA with the proteome of Mycoplasma
genitalium and the PSSM database wolf1187, as reported
below, there were 1426 potential matches with a score high
enough to merit testing the ratio λtr/λav. The ratio was
> 1.0 only 4% of the time, with a maximum value of
1.10. In contrast, the ratio was < 0.9 31% of the time,
with a minimum value of 0.56.

There is no proof that the theory above applies to gapped
alignments, but many computational experiments suggest
that it does (Smith et al., 1985; Collins et al., 1988; Mott,
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1992; Waterman and Vingron, 1994; Altschul and Gish,
1996; Pearson, 1998). A difficulty is that the statistical
parameters λ and K can not be derived analytically, but
must be estimated by simulation with random or real but
unrelated sequences. Some database search programs such
as FASTA (Pearson and Lipman, 1988) generate as a
byproduct scores for many unrelated sequences, and these
can be used to estimate the statistical parameters (Pearson,
1998). Gapped BLAST (Altschul et al., 1997) can not use
the same strategy, because it generates scores for only
a small number of unrelated sequences. Accordingly, it
uses random simulation to estimate ahead of time the
statistical parameters λg and Kg (‘g’ stands for gapped)
for any particular gapped alignment scoring system. One
disadvantage of this approach is that such estimates use a
standard residue composition, which does not reflect the
composition of either the query or database sequence.

PSI-BLAST generates at each iteration a new PSSM,
and it is impossible to anticipate the form of these
matrices for the purpose of random simulation. Because
it would be too time-consuming to re-estimate a gapped
λ for each new PSSM, Altschul et al. (1997) propose
a scaling strategy. Generalizing the formulas of Karlin
and Altschul (1990) to PSSMs in the obvious way, they
calculate ungapped λ for the comparison of a given
PSSM to a sequence of average composition. By scaling
the PSSM, this parameter can be made equal to λu for
ungapped alignments of protein sequences with standard
composition using a standard substitution matrix. It is
then postulated that if gaps are permitted, the parameter
λ for PSSM-sequence comparisons using a particular set
of gap costs will be the same as the previously estimated
λg for sequence–sequence comparisons. This hypothesis
is supported reasonably well in practice (Altschul et al.,
1997).

PSI-BLAST scales a PSSM just once, assuming the
proteins in the database can be described by an average
residue composition. IMPALA could use an analogous
strategy, by assuming the query has a standard residue
composition, and adopting the same PSSM scale as used
by PSI-BLAST. We found, however, that although this
works well in most cases, there is an occasional query–
PSSM pair whose true ungapped scale parameter λutr
(‘utr’ for ungapped, true) is much smaller than λu. This
leads to great overestimates of λgtr by λg, and attendant
exaggeration of the significance of alignments involving
the corresponding query–PSSM pair. To address this
problem, for each query–PSSM that appears to produce
a significant alignment, we rescale the PSSM based upon
the actual residue composition of the query, and rerun the
pairwise comparison. The PSSM rescaling is described in
steps 4 and 7 below. The intervening steps 5 and 6 assess
whether a query–PSSM pair can achieve a reportable E-
value before actually scaling the matrix at step 7. This

produces quite accurate E-values, as will be seen below.
The same strategy could be adopted by both PSI-BLAST
and gapped BLAST (Altschul et al., 1997) to yield more
accurate E-values at the cost of a slight decrease in speed.

The next subsection describes how the above theory is
engineered into the main program impala.

Impala main loop
The main loop of impala performs the following steps to
find the first match of a query Q to a PSSM M . For better
precision, impala uses by default, at steps 1–12, matrix
scores that are 100 times as large as those used in BLAST.
That is, the underlying floating point log-odds ratios are
first multiplied by 100 and then rounded. The main loop
uses two thresholds T1 ≥ T2 for deciding which E-values
merit further computational effort; by default, T1 is chosen
as 5T2.

(1) Let firstScore← the Smith–Waterman score for
aligning Q to M .

(2) Convert firstScore to firstEvalue using λg.

(3) If firstEvalue > T1, then stop.

(4) Compute λutr, and define F = λutr/λu, which, as
explained above, is the factor used to rescale M .

(5) If F > 1, proceed to step 7, skipping step 6.
Otherwise, multiply firstScore by F and use that
estimated score for the rescaled matrix to compute a
secondEvalue.

(6) If secondEvalue > T2 stop.

(7) Rescale M so that it has ungapped λ equal to λu, and
call it Mtr. This is done by multiplying each entry in
a floating point representation of M by F and then
rounding to the nearest integer.

(8) Let thirdScore← the Smith–Waterman score for
aligning Q to Mtr, and record the last position pair
of an optimal alignment.

(9) Convert thirdScore to thirdEvalue.

(10) If thirdEvalue > T2, then stop.

(11) Compute the other endpoint of an optimal align-
ment.

(12) Compute the optimal alignment as described below.

(13) Prepare the optimal alignment for display.

When a query Q has a match with Mtr of E-value
< T2, steps 8–13 of the above procedure are iterated to
find additional disjoint but significant local alignments
(Waterman and Eggert, 1987).

After computing optimal alignment scores and end-
points with the Smith–Waterman algorithm (step 11),
impala uses the X -drop alignment method of Zhang et al.
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(1998) to compute alignments. This is the same alignment
procedure used in BLASTP, and it finds alignments where
no subinterval of aligned residues and gap characters con-
tributes a partial score < −X , for some positive threshold
X . Using X -drop alignments allows impala to be easily
integrated with the NCBI toolkit; e.g. if in the future,
some decision is taken to change how BLAST pairwise
alignments are displayed, the decision will automatically
be implemented in impala. Alignments produced by
X -drop are not necessarily optimal for any specific value
of X . Since impala computes the score of the optimal
alignment before finding the X -drop alignment, it can
use the following well-known trick to convert the Monte
Carlo (likely to give the optimal answer in one try) X -drop
algorithm into a Las Vegas (guaranteed to give the optimal
answer after an uncertain number of tries) algorithm:

optScore← Smith–Waterman score for Q, Mtr
X ← default initial value
do {

testAlign← X -drop alignment of Q, Mtr
testScore← score of testAlign
X ← 2X

} while testScore < optScore

This method increases X until the X -drop method
finds an optimal alignment. The line X ← 2X can
be replaced by any strictly monotone increasing integer-
valued function of X . Run-time profiling (in the computer
science sense of this term) demonstrated that well over
90% of impala’s run time is spent rejecting PSSMs that
give a low score. Therefore, the number of times the
do while loop is iterated has little effect, and most any
choice of initial X > 0 and function for incrementing X
will run quickly enough in practice.

At output step 13, impala divides the alignment scores
by 100 to bring them back to the standard scale used by
BLAST, so that users are not misled by seemingly high
scores. This makes the impala output score for matching
Q to Mtr nearly equal the score produced by PSI-BLAST
with query M matched against Q in the database. There
may be small score differences due to the effects of better
scaling and rounding in impala. The E-values may be
quite different. The alignments should be nearly the same,
except that the roles of ‘Query’ and ‘Subject’are reversed.

Two profile databases
To measure the accuracy of IMPALA output, it is con-
venient to use databases of PSSMs for which homology
predictions have been made directly using PSI-BLAST,
and these predictions thoroughly evaluated. We thus tested
IMPALA on two PSSM databases created for other
projects. The most we can hope is for IMPALA to be
comparable to PSI-BLAST in prediction accuracy, but

faster than even a single BLAST search.
The first database we used consists of a collection

of 1187 PSSMs (Wolf et al., 1999), hereafter called
wolf1187, that correspond to the folds in the SCOP
database (Hubbard et al., 1999; Murzin et al., 1995). In the
original study, 1195 PSI-BLAST PSSMs were constructed
to represent most members of the SCOP 1.35 classification
(Wolf et al., 1999). Of the over 400 folds present in
SCOP, 284 were used to generate the collection of PSSMs
(the remaining folds were excluded for reasons detailed
in Wolf et al., 1999), so the correspondence between
PSSMs and folds is many-to-one. There were two minor
differences between wolf1187 and the original version of
this collection (Wolf et al., 1999). In Wolf et al. (1999)
two PSSMs were dropped because they represented folds
seen only in viruses. Here we retain these PSSMs, but
drop eight that are in effect position-specific instantiations
of the underlying BLOSUM62 matrix (Henikoff and
Henikoff, 1992), arising because PSI-BLAST found no
significant matches to the original queries.

Wolf et al. (1999) evaluated the part of their PSSM
database corresponding to the 30 most common folds
on 15 complete, or nearly complete proteomes. For each
sequence in each proteome, an initial homology prediction
was recorded if the best PSSM match for the sequence
gave an E-value, based on the size of the non-redundant
protein sequence database (nr), below 0.01. To establish
true and false positives, these predictions were then
examined for the conservation of motifs typical of the
respective protein families and superfamilies. By running
PSI-BLAST in the opposite direction, i.e. by comparing
the protein sequences encoded in the analyzed genomes to
nr, registering hits to proteins present in PDB and, again,
testing for the presence of diagnostic motifs, some false
negatives were identified.

We believe that the evaluation of predictions for the
M.genitalium proteome (Fraser et al., 1995) is nearly
perfect, since all the protein sequences encoded in this
small genome were examined in detail, and especially
because the fold assignments have been largely corrob-
orated by four independent studies (Fischer and Eisen-
berg, 1997; Huynen et al., 1998; Rychlewski et al., 1998;
Teichmann et al., 1998). Although the analysis of the
467 sequences in the M.genitalium proteome described
in print (Wolf et al., 1999) included only PSSMs repre-
senting the 30 most common folds, similar evaluation
was subsequently performed for all PSSMs in this col-
lection (Y.I.Wolf and E.V.Koonin, unpublished work;
ftp://ncbi.nlm.nih.gov/pub/koonin/FOLDS/index.html).

The second database we used consisted of 105 PSSMs
and was originally constructed for the purpose of compar-
ing the relative abundance of a set of widespread regu-
latory and signal-transduction domains in the proteomes
of the yeast Saccharomyces cerevisiae and the nematode
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worm Caenorhabditis elegans; the performance of this li-
brary, hereafter aravind105, was evaluated essentially as
described for wolf1187 (Chervitz et al., 1998).

We tested aravind105 on the S.cerevisiae proteome, for
which a set of true positive matches was expertly curated.
In short, for the protein domain families that are part
of this PSSM collection, true positives in yeast were
established by a series of transitive searches with PSI-
BLAST initiated with different seed sequences, followed
by a case-by-case analysis of the alignments generated.
To confirm individual predictions, these alignments were
checked for characteristic features of the relevant protein
families. In this test we considered all IMPALA matches
for each query; in the wolf1187 test we considered only
the top match. The main reason for this difference is that
most M.genitalium proteins have a single protein domain,
and thus correspond to just one fold, whereas a single
eukaryotic signalling protein often possesses more than
one domain from aravind105.

Results
We evaluate IMPALA on sensitivity in finding homologs
while avoiding false positives, accuracy of reported E-
values, and speed. Since IMPALA is targeted to users
of BLASTP and PSI-BLAST, the evaluation methods are
focused on those programs.

Sensitivity
To measure sensitivity, we need a large set of queries and
a database of PSSMs between which all true positives
(homologies) are known.

The set of 467 proteins of the parasitic bacterium
M.genitalium (Fraser et al., 1995) matched against the
wolf1187 database, and the set of 6406 (as of February 28,
1999) proteins of S.cerevisiae matched to the aravind105
database, should satisfy these criteria, as explained above.
In Wolf et al. (1999) the searches were done by running
PSI-BLAST with the representative sequence of each
PSSM against a database of M.genitalium proteins, and
E-values were calculated based on the size of the nr
database at the time (approx. 7 × 107 residues). A ‘fold
prediction’ was registered when a reported match had an
E-value ≤ 0.01. Only the most significant match for each
M.genitalium protein was recorded as a prediction.

By analogy with the above test, we ran IMPALA with
each M.genitalium query against the wolf1187 PSSM
database. A ‘prediction’ was registered when the most
significant match had an E-value below some cutoff. A
cutoff of 0.01, based on the total size of wolf1187, makes
sense in a semi-automated setting where predictions will
be checked further by other methods, and it is desirable to
minimize false negatives. We also used a cutoff of 3×10−5

(= 0.01 multiplied by the ratio of wolf1187 size/old nr

Table 1. Number of matches in a performance comparison of IMPALA and
PSI-BLAST using wolf1187 PSSMs and M. genitalium queries

IMPALA IMPALA PSI-BLAST

E-value threshold 0.01 3× 10−5 0.01
True positives 204 192 196
False positives 8 2 4
False negatives 23 35 31

size) that is more appropriate in a fully automatic setting
where it is desirable to minimize false positives. The
results are shown in Table 1.

With the 0.01 cutoff, IMPALA finds slightly more
true positives as well as false positives than does PSI-
BLAST. With the 3× 10−5 cutoff, IMPALA finds slightly
fewer true and false positives than does PSI-BLAST. This
comparable sensitivity is quite acceptable because of the
gain in efficiency. To classify one new protein, one needs
only a single IMPALA query, while one needs 1187 PSI-
BLAST queries. The two false positives in the middle
column of Table 1 have E-values < 10−20, suggesting
these matches arise from flaws in the way PSI-BLAST
constructs PSSMs. This is of course a danger when using
a fully automated approach like PSI-BLAST to construct
PSSMs. In contrast, SMART (Ponting et al., 1999b),
as well as aravind105, are based on careful curation of
multiple alignments, but this limits the number of profile
models that can be built quickly.

For the test of aravind105 and S.cerevisiae, we started
with a list of 998 true positive matches derived from
detailed, case-by-case analyses. Since the true positives
were compiled primarily using PSI-BLAST, we would
expect PSI-BLAST’s performance to be very good on this
test set. This test was also more stringent because here we
evaluated not just the top match, but all IMPALA matches
with an E-value below a specified threshold.

A useful way to study the relative sensitivities of
IMPALA and PSI-BLAST is by plotting coverage (i.e.
percent of true positives found) vs. false positives per
yeast sequence (see e.g. Brenner et al., 1998). Advantages
of such a plot are that it elides the question of the two
comparisons’ differing search spaces, and also that of
the relative accuracy of the two methods’ reported E-
values. However, it requires at least a few 10s of false
positives to get a meaningful plot. The results for the
aravind105 vs. S.cerevisiae test are shown as a coverage
vs. false positives plot in Figure 1. To compute coverage
we assumed 1012 true positives: the 998 found originally,
plus 14 newly uncovered by IMPALA and confirmed by
careful transitive searches with different starting queries.
Again, when equal numbers of false positives are allowed,
IMPALA and PSI-BLAST yield quite similar coverage.
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Fig. 1. Plot of coverage vs. false positives per yeast sequence
for IMPALA and PSI-BLAST using S.cerevisiae sequences and
aravind105 PSSMs. For each program, matches were sorted in
increasing order of E-value, and the points on the plot represent
the tradeoffs between fraction of true positives and fraction of false
positives at different E-value cutoffs.

We were further interested in comparing the perfor-
mance of IMPALA to that of other PSSM-based methods,
starting from equivalent points. In part because of the
results of the next subsection, it appeared the most
stringent test would be to compare IMPALA to HMMER,
which works best using a set of multiple alignments as its
starting point. This comparison is difficult to design since
a principal virtue of IMPALA is that it uses PSSMs gen-
erated on the fly by PSI-BLAST from master–slave rather
than true multiple alignments, and it operates on these
PSSMs rather than a database of multiple alignments.
However, PSI-BLAST can convert master–slave multiple
alignments to PSSMs, thereby permitting a comparison of
IMPALA with programs that use a multiple alignment as
the input description of a profile.

Specifically, the performances of IMPALA and
HMMER (version 2.1; S.Eddy, unpublished, http:
//hmmer.wustl.edu/) were compared in detecting intracel-
lular signalling domains represented within the complete
set of S.cerevisiae proteins. For this purpose 45 multiple
alignments of domains were obtained from the SMART
database (Ponting et al., 1999b). HMMs were calculated
for each of these 45 alignments using HMMER’s hmm-
build and hmmcalibrate modules, and default parameters.
Each yeast sequence was compared with the HMM library
using the hmmpfam program.

PSI-BLAST derives PSSMs by discarding insertions,
relative to a ‘master’ query sequence. Thus, for compar-
ison with HMMER, multiple PSI-BLAST-style PSSMs
were derived from each multiple alignment, and used

Fig. 2. Plot of coverage vs. false positives per yeast sequence for
IMPALA and HMMER using S.cerevisiae queries and 45 curated
multiple alignments. The multiple alignments are converted to
HMMs for HMMER and sets of PSSMs for IMPALA.

as a database for IMPALA. For this multiple PSSM
construction, all sequences represented in an alignment
were clustered using a single-linkage algorithm on the
basis of sequence-to-sequence BLAST scores. The clus-
tering threshold was automatically optimized within the
preset range (0.1–1.0 bits/position), to obtain numbers of
clusters close to 10. One sequence from each cluster was
arbitrarily chosen as the master, and PSSMs were created
using the –B option of PSI-BLAST. The resulting number
of PSSMs for each multiple alignment ranged from 1 to
40.

Yeast sequences that gave high-scoring hits to the
45 SMART domain families were classified as either
true positives (homologs) or false positives (unlikely
homologs). The assignments drew upon the manually
curated homology assessments embodied within SMART,
the analysis of signaling domains published in Ponting
et al. (1999a), other information from the literature, and
additional PSI-BLAST database searches.

The results of this analysis are shown in Figure 2, using
a coverage vs. error plot, as before. In this test, HMMER
outperformed IMPALA in coverage by a few percentage
points over the complete range of false-positive rates. This
reveals limitations of PSI-BLAST-constructed PSSMs,
compared with HMMs. Furthermore, we observed that
IMPALA performed poorly and not comparably with
HMMER in detecting domains that consist of multiple
repeats; IMPALA systematically underestimated the
number of repeats, although the presence of at least one
copy was detected (data not shown).

The performance of HMMER critically depends on the
quality of the multiple alignments it is provided. The
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alignments used in this test were manually curated and
optimized for performance with HMMER (Ponting et
al., 1999b). Thus we believe that the test in Figure 2
is a conservative estimate of IMPALA’s performance.
Generating large sets of well-curated multiple alignments
is laborious and time-consuming. Therefore the principal
use of the current implementation of IMPALA will be
with large libraries of PSI-BLAST-constructed PSSMs,
such as wolf1187, which may not be accompanied by
the corresponding multiple alignment libraries. IMPALA’s
performance with such relatively crude PSSMs should
be only slightly inferior to that of HMMER, one of the
most powerful HMM-based methods employing carefully
optimized multiple alignments.

Accuracy of reported E-values
To evaluate the accuracy of the E-values reported by IM-
PALA, we submitted as queries either shuffled or reversed
protein sequences, and recorded how many matches fell
below various thresholds. For simplicity, we again used
the 467 M.genitalium proteins and the wolf1187 PSSM
database. Shuffled queries mimic completely random
sequences that preserve only the composition bias of true
proteins. Reversed queries preserve some of the neighbor-
hood structure of actual proteins, and may yield a more
appropriate test of statistical significance. Table 2 shows
that in both tests IMPALA gives roughly the expected
number of matches at various thresholds, with reversed
queries tending to yield slightly more matches than
shuffled queries. IMPALA’s E-values appear somewhat
conservative: 47 total matches are expected to have an
E-value < 0.1, and 467 to have an E-value < 1.0, but 34
and 318 are observed, respectively, in the reversed query
test.

As explained above, IMPALA rescales the score matrix
for each match. We found that if this is not done,
six profiles out of the 1187 give many matches to
either reversed or shuffled queries. This results from
compositional bias in some query sequences that is
systematically favored by the PSSM scores in these six
cases. E-values are distorted in the same way when
these protein–PSSM pairs are compared in PSI-BLAST.
The consequences are distributed over many queries
in IMPALA, but concentrated on a small number of
queries in PSI-BLAST, because the problematic PSSMs in
IMPALA correspond to queries in PSI-BLAST. Therefore,
PSI-BLAST E-value tests (as in Altschul et al., 1997)
may miss or poorly estimate the severity of the problem,
depending upon how often the queries used lead to PSSMs
where λutr may be much smaller than λu.

We performed statistical tests using the same queries
on a number of other software packages that can search
profile libraries. These tests do not measure the ability
of various packages to separate true relationships from

chance similarities, but simply the reliability of the E-
values (p-values for BLIMPS) they report. These tests
are easier to do than a sensitivity comparison, but are
still difficult because of different profile libraries and
extremely different notions about how to parameterize
the programs. To give each program the best chance
possible in this test, we used the default profile library
most associated with the program. It would be better
to compare all programs on the same library, but this
is not feasible because of the four packages we tested,
only MAST (Bailey and Gribskov, 1998) is comparable
to IMPALA in allowing one to take as input a query and a
library of PSSMs.

As shown in Table 2, the E-values returned by the
hmmpfam program of HMMER (Eddy, 1996) using the
Pfam 4.0 (Bateman et al., 1999) library are roughly equiv-
alent to IMPALA’s. The p-values returned by BLIMPS
(Wallace and Henikoff, 1992) using the BLOCKS
database (Henikoff and Henikoff, 1994) are optimistic by
a factor greater than 3 at p = 0.1, and greater than 10
at p = 0.001. The E-values returned by MAST (Bailey
and Gribskov, 1998) using the PSSMs in the wolf1187
library are generally unreliable. The E-values reported
by the program pfscan (Bucher et al., 1996) using the
PROSITE-derived library provided with the code are
optimistic by a factor of 2–4 depending on query type and
E-value threshold. The method for calculating p-values
in BLIMPS is undergoing refinement (J.Henikoff, per-
sonal communication). Also, MAST appears designed
to operate primarily on profiles of the sort output by the
companion program MEME (Bailey and Elkan, 1995),
rather than the full-length PSSMs used in this test, and
may produce more accurate E-values in that context.

Speed
Because IMPALA performs a Smith–Waterman align-
ment of the query to each PSSM in its database, it is
substantially slower than BLAST when the two programs
are executed on databases of equivalent length. However,
IMPALA usually will be run on a PSSM database much
smaller than the protein database typically used by
BLAST. Therefore, to compare the speed of IMPALA
and BLAST in a meaningful way, we tested IMPALA
on the large wolf1187 PSSM database (256 703 total
matrix positions), and BLAST on the nr protein database
(108 411 201 total residues). Table 3 shows that in this
context (i.e. a database length ratio of about 420), IM-
PALA runs more than three times as fast as BLASTP on
a spectrum of query lengths. We selected protein queries
with length near a multiple of 100 to help clarify how
running time depends on query length. For the timing
test we ran only the main program impala, because the
two preprocessor programs need to be used only once per
database. The timing experiment was run on one 168 MHz
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Table 2. Number of matches using reversed (Rev.) and permuted (Perm.) M.genitalium queries. For IMPALA and MAST we used the wolf1187 PSSM library;
for HMMER we used the hmmpfam program and the Pfam 4.0 library of HMMs; for BLIMPS we used the built-in BLOCKS database; for pfscan we used the
PROSITE-derived library provided with the code. BLIMPS reports p-values, not E-values, but these are essentially equivalent over the range in question. NR
stands for not reported

E-value IMPALA HMMER BLIMPS MAST pfscan
threshhold Rev. Perm. Rev. Perm. Rev. Perm. Rev. Perm. Rev. Perm.

0.0001 0 0 0 0 0 0 57 41 0 0
0.001 0 0 0 0 5 5 65 52 0 1
0.01 3 3 3 2 19 34 74 62 15 15
0.1 34 24 24 20 155 173 83 75 175 138
1 318 223 374 194 NR NR 91 91 1074 1019

Table 3. Running times in seconds and number of matches for IMPALA and BLASTP using wolf1187 PSSMs and M.genitalium queries. Protein sequences
are identified using NCBI gi numbers

Sequence Length IMPALA time BLASTP time IMPALA matches BLASTP matches

1350726 48 4 24 1 39
1350690 100 6 32 6 35
1351488 200 10 41 5 21
1346397 297 16 54 23 135
1351482 398 19 73 7 60
1346141 508 24 88 12 79
1709636 607 32 98 27 98
1351503 701 33 116 15 214
1351145 900 43 152 16 169
1351473 1206 55 182 12 112

UltraSparc processor of a Sun Ultra Enterprise 4000/5000
server with 768 MBytes of RAM. This computer runs
the operating system Solaris, version 2.6 which is an
implementation of UNIX. We used the current Sun C
compiler, with optimization turned on, for both impala
and BLASTP. The times in the table are the sum of user
and system times reported by the time command for the
faster of two identical runs. All times are in seconds.

Table 3 shows that IMPALA requires approximately 4
extra seconds for every additional 100 residues, and a little
extra time when there are more matches.

While conducting the sensitivity comparison of IM-
PALA and HMMER described above, we also measured
running time. The total time for all runs of the impala
program was 30 264 s; the total time for all the runs of the
hmmpfam program was 39 471 s. This comparison does
not include preprocessing time because most of the work
to prepare the inputs to hmmpfam had already been done
as part of the ongoing SMART project (Ponting et al.,
1999b) and related research.

Discussion
IMPALA allows rapid, rigorous searching of databases
of PSSMs created by PSI-BLAST. Other combinations

of PSSM databases and search tools exist, including
Pfam/HMMER (Eddy, 1996; Sonnhammer et al., 1997;
Bateman et al., 1999), SMART/HMMER (Eddy, 1996;
Ponting et al., 1999b), PROSITE/pfscan (Bucher et al.,
1996), but none of these allows searching of PSI-BLAST
created PSSMs. At the recent CASP3 protein structure
prediction competition many of the presenters used PSI-
BLAST to construct their PSSMs (Sternberg et al., 1999),
which suggests that a search tool compatible with PSI-
BLAST PSSMs is needed.

IMPALA can be used with multiple (arbitrary)
databases, not a specific database like Pfam or SMART.
We have demonstrated that IMPALA gives accurate
predictions, is statistically accurate, and fast.

IMPALA’s algorithmic methods may be used with
PSSMs generated by other programs. For syntactic
reasons, however, the software is strongly tied to PSI-
BLAST. The PSSMs in the library are assumed to be
in PSI-BLAST byte-encoded format. Each PSSM is
assumed to have an associated protein sequence to define
its columns. This allows BLAST output code to display
alignments between IMPALA’s query sequences and the
representative sequences of any PSSMs that they match.
Therefore, most existing programs for post-processing
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BLAST output should be able to parse IMPALA output as
well. This design decision was validated when IMPALA
was recently added as a search option to the Blocks
Database Server, which already had a PSI-BLAST option.
Because IMPALA produces output that is syntactically
very similar to BLAST output, much of the WWW-related
code could be reused in installing an IMPALA option.

Because IMPALA solves some of the same subproblems
as BLASTP, but is a small and malleable piece of software,
it is a useful testbed for prototyping improvements to
BLASTP. For example, we plan to reuse the IMPALA
code for more precise alignment scoring and statistical
assessment in trial versions of PSI-BLAST.

The IMPALA source code, the wolf1187 database,
and the aravind105 database are freely available
from the NCBI ftp site ncbi.nlm.nih.gov. The two
databases may be found in the subdirectory ftp:
//ncbi.nlm.nih.gov/pub/impala. The source code is in
ftp://ncbi.nlm.nih.gov/toolbox/ncbi tools, and some IM-
PALA executables for different implementations of UNIX
are in ftp://ncbi.nlm.nih.gov/blast/executables. IMPALA
has recently been added as a search option on the Blocks
Database Server (http://blocks.fhcrc.org/blocks/impala.
html) using a different library of PSSMs derived from the
BLOCKS database (Henikoff and Henikoff, 1994). The
databases are distributed as a collection of ASCII files
computed by the first preprocessor program makemat,
ready for input to the second preprocessor program
copymat. The user needs to run copymat just once for
each database.
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